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PARALLELIZATION OF AN OBJECT-ORIENTED UNSTRUCTURED

AEROACOUSTICS SOLVER *

ABDELKADER BAGGAG t, HAROLD ATKINS$, CAN OZTURAN§, AND DAVID KEYES ¶

Abstract. A computational aeroacoustics code based on the discontinuous Galerkin method is ported

to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method

that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the

discontinuous Galerkin method can be combined with explicit time marching methods making it well suited

to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it

well suited for distributed memory parallel platforms. The original serial code was written using an object-

oriented approach and was previously optimized for cache-based machines. The port to parallel platforms

was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications

were minimal because boundary conditions were abstractions in the original program. Scalability results

are presented for the SGI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear

speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

Key words, discontinuous Galerkin method, object-oriented, unstructured grids, Euler equations, high-

order accuracy, superlinear speedup

Subject classification. Computer Science

1. Motivation. Computational Aeroacoustics (CAA) involves the direct simulation of sound generation

and/or propagation about an aircraft or an aircraft component. To be of practical value in the aircraft design

process, these massive computations must be performed quickly, and to do so requires efficient use of parallel

computer platforms.

CAA methods must provide both temporal and spatial accuracy beyond what the second-order discretiza-

tions employed in most other areas of computational aerodynamics are capable of providing. In addition,

such methods must be easy to apply to complex geometries without sacrifice of accuracy or robustness.

These requirements further complicate the design of the parallel implementation. For instance, traditional

high-order finite-difference methods are not compact and the amount of data that must be moved across

partition boundaries increases considerably with the order of the method. The requirement for time accuracy

means all partitions must be advanced in lock step. Common techniques used in steady calculations, such

as lagging some information or communicating only after several iterations, cannot be employed.

The discontinuous Calerkin method is a relatively new approach that satisfies the numerical requirements

of CAA and the algorithmic requirements of parallel implementation. Discontinuous Galerkin is a compact
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method that can be applied to structured or unstructured grids. Many of the method's accuracy and stability

properties have been rigorously proven [1, 2, 3, 4, 5] for arbitrary element shapes, any number of spatial

dimensions, and even for nonlinear problems, which lead to a very robust method. It has been demonstrated

in mesh refinement studies [6] that the accuracy of this method does not depend upon the smoothness of

the mesh. Furthermore, the method requires no special treatment near boundaries, which are problematic

for many high-order methods. These features are crucial for the robust treatment of complex geometries.

In semi-discrete form, the discontinuous Galerkin method can be combined with explicit time-marching

methods, such as Runge-Kutta, to create a method well suited for CAA applications. The method has

been criticized for its high storage and high computational requirements; however, a recently developed

quadrature-free implementation [6] has greatly ameliorated these concerns. The quadrature-free form of the

discontinuous Galerkin method has been implemented and validated [6, 7, 8] in an object-oriented code for

the prediction of aeroacoustic scattering from complex configurations.

The same compactness that permits the accuracy to be insensitive to mesh smoothness makes the method

well suited for implementation in parallel machines. Biswas, Devine, and Flaherty [9] applied a third-order

quadrature-based discontinuous method to a scalar wave equation on a NCUBE/2 hypercube platform. They

reported a 97.57% parallel efficiency on 256 processors.

In this work, the discontinuous code developed by Atkins has been ported to several parallel platforms

using MPI. The code solves the unsteady linear Euler equations on an unstructured mesh in two dimensions.

A detailed description of the numerical algorithm can be found in reference [6]; however, the code structure

has not been previously described. The first section of this article provides a brief description of the numerical

method followed by a more detailed description of the code structure and the object-oriented design of the

code. The second section describes the parallelization strategy and the modifications to the code to implement

that strategy. The third section presents performance results of the code on the Origin2000 and several other

computing platforms.

2. Discontinuous Galerkin Method. The discontinuous Galerkin method can be applied to an

equation in conservation form

(2.1) OU0--_ + v. ,_(u) = 0

defined on a domain f_ with appropriate boundary conditions. The domain is divided into smaller, nonover-

lapping elements f_i that cover the domain, i.e., f_ = O_i. The discontinuous Galerkin method is obtained

by applying a traditional Galerkin method to each element [10]. That is, a fiuite-dimensional basis set is

selected for each element, the solution in each element is approximated in terms of an expansion in that basis

set, and the governing equations are then projected on each member of the basis set and cast in a weak form

(2.2) f 0V_bk---_dl2 - f Vbk.ff(V_)d_ + / bkffR(Vi,_).r_ds ---- 0

where r_ in an outward-pointing, surface-element normal, B - { bk, 1 < k < N(p,d) } denotes the basis

set of degree p in d space dimensions,

g(p,_)

(2.3) Vi -- E v_,tbt _ U_,
l=1

is the approximate solution in element _i, Vj denotes the approximate solution in a set of neighboring

elements (_j}, and Vi and Vj denote the trace of the solution on a segment of the element boundary. The



coefficientsoftheexpansionvi,l become the new unknown variables. In the fully discrete approach [11], the

basis set contains both temporal and spatial functions. In the semi-discrete approach, which is used here,

the basis set contains only spatial functions, and the solution expansion coefficients are functions of time

(i.e., v(t),,l.)
Because each element has its own approximate solution, the global solution is discontinuous at the edge

between elements. This discontinuity is resolved through the use of an approximate Riemann flux vector

Fn(Vi, Vj). The approximate Riemann flux provides the crucial coupling between elements, as well as the

correct upwind bias that is required to ensure stability. It is, in fact, the only means by which neighboring

elements communicate. Thus, each element communicates only with its nearest neighbors regardless of the

order of the method. In the present work, the Riemann flux is approximated by a simple Lax-Fredrichs type

flux of the form

where A is greater than the maximum of the absolute of the eigenvalues of [F(_) + F(V-jj)]

When the basis functions are polynomials of degree p, the order of accuracy of the method has been

rigorously proven to be at least p +½ [1]. In practice, however, a polynomial basis of degree p will usually

give an error that converges at a rate of h p+I where h is some average mesh size. In this work the term

"r-order method" is used to refer to a method with a polynomial basis of degree r - 1.

In the quadrature-free formulation, developed by Atkins and Shu in [6], the flux vector f is approximated

in terms of the basis set. The approximate Riemann flux is approximated in terms of a lower dimensional

basis set/_t associated with the segment of the element boundary that is common to fti and 12j

M hi

l=1 l=l

and

M 1 M

l=1 /=1

In the linear case, the expansion is cxact with M = N; however, in the nonlinear case, the degree of the flux

expansion may be higher than that of the solution. With these approximations, the volume and boundary

integrals can bc evaluated exactly, instead of by quadrature, leading to a simple implementation.

0V

(2.5) Ot - (M-1A) • F -

where

IfIV -= [vi,l], F ------ ,l , and _,R = i,l -

and Of_ denotes the portion of Oft common to elements fti and ftj.



By performingtheintegrationsonsimilarityelements,suchasaunit triangleorsquare,theequations
canberecastas.

cgt -- Ji-I (M-1A)" J'Ji-lF - _-_(M-1BJ)J'Ji-l_'_
{3}

where Ji denotes the Jacobian of the coordinate transformation from the similarity element to _i, and

Ji -- ]Ji I. The matrices M-1A and M-1Bj are constant matrices that apply to all elements of a given type,

and can be evaluated easily and exactly for any type of element shape. Hence they can be precomputed at

a considerable savings. The details of the derivation can be found in [6].

3. Code Structure, Data Structures, and Object Model. The design of the program was moti-

vated by the desire to maximize the advantages offered by the discontinuous Galerkin method while avoiding

deficiencies that are common to traditional methods for unstructured grids. This motivation was, of course,

in addition to the usual interest in efficiency, code reuse, and code maintenance.

Traditional flow solvers for unstructured meshes usually require more storage and have a slower compu-

tational rate than methods developed for structured grids. The extra storage arises from the pointers that are

required to identify nearest neighbors, and sometimes, second nearest neighbors. The slower computational

rate results from the gather-scatter type operations that occur at nearly every step of the algorithm. Unlike

traditional finite-difference methods, the discontinuous Galerkin method has a large amount of data within

each element and a large amount of work that is local to the element. By blocking the data by element

and by a segregation of the methods according to whether or not gather-scatter operations are required, the

usual weaknesses of methods for unstructured grids are eliminated. As will be seen later, these techniques

also lead to a code structure that is easily and efficiently ported to parallel platforms.

The residual evaluation (the right-hand side of equation (2.6)) can be decomposed into a few fundamental

operations. Figure 3.1 shows these operations and the flow of data between these steps. Each operation has

been grouped according to whether or not gather-scatter is required. The Element group contains all the

data and operations that are completely local to the individual element. These operations can be processed

in any order. The Edge group contains operations that require gather-scatter type operations and inter-

clement communication. The operations of the Element group are further divided into those that depend

only on thc geometry of the element and those that depend only on the particular governing equations.

These three groups naturally lead to the adoption of three primary base classes: Element, Edge, and

Physics. All three base classes are virtual and the Element and Physics classes are pure virtual. Specific

element shapes (e.g., square, triangle, tetrahedron, etc.) and governing equations (e.g., scalar advection,

Euler, etc.) are implemented in subclasses as illustrated in Figure 3.2. Each Element object contains a list

of elements of a similar type (i.e., same shape, basis set, etc.) which eliminates the overhead of runtime

dynamic binding. The solution data within the Element object is blocked by clement. Because the collection

of elements within a given object are of the same type, the size of structure of the data blocks are constant.

The Element and Physics classes share data and are tightly coupled.

The Edge class has the task of evaluating _'y on each edge from data in the elements on either side. An

Edge object performs this task for a list of similar edges. The elements on either side of an edge are arbitrarily

designated as being on the left or right sides of the edge. The Edge object does not contain any solution

data. Instead, the Edge object contains only two pointers for each edge that points directly to a block of edge

data within an element object. The Edge object accesses the data for IV,/_]l_yt, and IV, F]r_gh_, computes

the approximate Riemann flux, and stores the result back in the Element object in the space allocated for
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Fzc. 3.1. Computational groupings.

FIG. 3.2. Class hierarchies for the object model.

Fze/t and _'r_ght. The base Edge class has a generic method for evaluating the approximate Riemann flux;

however, this method is also overloaded in specialized subclasses to optimize the method for thc number of

spatial dimensions, or to treat cases in which the Physics of the left and right elements are different.

Boundary conditions are implemented as a special type of subclass in which an element exists on only one

side of the edge (the left side by convention). Any boundary condition can be imposed either by supplying a

special version of the approximate Riemann flux, or by supplying solution data for the side where the element

is missing. The boundary edge class Edge_BD is a pure virtual class that sets up and initializes the additional

data needed to impose most boundary conditions. New boundary conditions are easily implemented simply

by creating a new derived class that supplies the required data or evaluates the flux in the desired manner.

A particular problem is represented by lists of pointers to Element objects and Edge objects so that

elements of different types can be readily mixed. The first object in the Edge list usually contains all the

interior edges, and the remaining objects support boundary conditions.

4. Parallel Design Consideration. The parallelization using a domain decomposition approach was

easily implemented by treating the partition edges as a special boundary condition. The Edge_P class provides
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FIG. 4.1. Sequence of operations in the parallel residual evaluation.

storage for send and receive buffers and methods to initialize and manage the new data. The Edges class has

only three new methods, InitPids (), BeginSendRecv (), and EndSendRecv (), and overloads two methods

of the base Edge class. The method InitPids () initializes the data that describes the structure of the send

and receive buffers (i.e. how many neighboring partitions, who are they, and what part of the send buffer

goes to each). The method BeginSendRecv () collects data from elements on the left side of a partition edge

in the send buffer and posts the sends. This method also posts the receives using asynchronous message

passing which enables communication/computation overlap, and prevents deadlock due to the large buffer

size. The method EndSendRecv() provides a barrier that ensures the synchronization required by the time

accurate calculation. The base Edge class methods that allocate data and initialize pointers are overloaded

by the Edge_P class methods. The pointers that would normally point to the data in the element on the

right side of the edge arc now initialized to point to a block of data in the receive buffer. The actual flux

computation is inherited from the base Edge class, and all code written for the Element, Physics, and Edge

classes remains unchanged. The Edge_P class contains only about 120 lines of code, out of approximately

20K lines of C++ user cod(. for the overall application, exclusive of linked libraries.

The computation wa._ r(_ordered to maximize the overlap of communication and computation as shown

in Figure 4.1. First, the ¢xtg(..,_lution and flux (1) and/O) are computed, the send buffer is loaded, and the

sends and receives arc posted. Wtfile the communication is occuring, the volume flux F is computed for

all elements, the approximate Ricmann flux is computed for all interior edges, all boundary conditions are

applied, and the contribution of the volume flux to the residual is evaluated. Finally, the contribution of/OR

is computed and the solution is updated after all communication has been completed.

Another important aspect of the parallelization task is the domain decomposition. The original code de-

fined an initial grid structure that completely described the coordinates, element connectivity, and boundary

conditions of the problem. In the parallel version, each processor reads or creates a structure that defines

its portion of the domain. The remainder of the initialization process proceeds as in the original code. In an



earlierversion,thedomainwasdecomposedusingtheParallelMeshEnvironment(PME)softwaredeveloped
byOzturan[12];however,thepresentversionmakesuseofthePARMETIS[13]softwareforthedomainde-
composition.Eachprocessorreadsorcreatestheglobalgridstructure,generatestheinputforPARMETIS,
andcreatesthegridstructureforitspartitionofthedomain.Currently the partitioning method adds about

455 lines of code.

5. Benchmark Problem. The parallel code is used to solve problems from the Second Benchmark

Problems in Computational Aeroacoustics Workshop [14] held in 1997. The physical problem is to find the

sound field generated by a propeller scattered off by the fuselage of an aircraft. The fuselage is idealized as

a circular cylinder and the noise source (propeller) is modeled as a line source so that the computational

problem is two-dimensional. The linearized Euler equations are in the form of equation (2.1) where

p Mxp Mup

U = P and _ = M_p+u Mup+v
u M_u + p Myu

v M_:v Muv + p

For the test problem, Ms = M u = 0 and the initial conditions are

1

v(.,0) =
0

0

The boundary conditions consist of: a zero-normal velocity at the surface of the cylinder, i.e., v. n = 0;

and a radiation boundary condition for x, y ---* oo. The problem is to find the pressure p(t) at the three

points A(r = 5,0 = 90), B(r = 5,0 = 135), and C(r = 5,0 = 180). Figures 5.1 and 5.2 show a typical

partitioned mesh used on the following performance test and the corresponding time history of the pressure

at point A.

FIG. 5.1. Partitioned mesh for the solved problem

6. Results and Discussion. Performance tests have been conducted on the SGI Origin2000 and IBM

SP2 platforms, and on clusters of workstations. The first test case applied a third-order method on a coarse
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mesh of only 800 elements. Near linear speedup is obtained on both machines (Figure 6.1); however, the

partition size becomes small on more than 8 or 10 processors and performance begins to drop off noticeably.

This small problem was also run on two clusters of, resp., SGI and Sun workstations in an FDDI network

16
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0
0

origin2000

L I I I

2 4 6 8 1; 12 14 1;

# processors

F[c. 6.1. Performance on the Origin2000 and SP2 for a problem with 800 third-order elements.

(shown in Table 6.1). The two clusters consisted of similar but not identical hardware. The network was

not dedicated to the cluster but carried other traffic. All timings are reported in seconds.

Two larger problems were used to evaluate the code on the Origin2000. For these cases a fifth-order

method was used and the problem size was further increased by decreasing the element size and by varying

the location of the outer boundary. Tables 6.2 and 6.3 present detailed statistics about the mesh, per



Small fixed problem size, various platforms

DOF = 24,000 # edges = 1,176 # vertices= 421

# Processors SP2 SGI SUN

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 378 1.00 311 1.00 316 1.00

2 197 1.92 156 2.03 160 1.97

4 102 3.70 93 3.34 89 3.55

8 53 7.13 58 5.36 103 3.06

16 31 12.2

32 23 16.4
TABLE 6.1

Performance on SP2 and workstation clusters for problem with 800 third-order elements.

Intermediate fixed problem size, Origin2000

DOF -- 1,366,560 # edges = 34,393 # vertices= 11,690

# Processors [# Elements/ProcessorJ

22,776

Speedup

1.000

1.670

Rate (10 6 )

6.35903

7.600022 11,388

4 5,694 3.409 7.45281

8 2,847 7.856 6.44211

10 2,277 8.680 7.28149

12 1,898 13.811 5.49986

16 1,423 21.275 4.76637

32 711 44.748 4.38155

48 474 64.288 4.92951

64 355 68.157 4.73365

TABLE 6.2

Performance on Ori_n2OOO_rproblemwith 22,776 fi_h-orderelements.

processor load, speedup, and computational rate. The computational rate is defined as the maximum wall

clock time of any processor divided by the number of degrees of freedom per processor. All processors have

essentially the same wall clock time because the time accurate calculation is synchronized at each stage of

the Runge-Kutta. In this larger problem, superlinear speedup is obtained as the number of elements per

processor is decreased. This result is due to the improvement in cache performance that occurs when a

fixed problem is divided into smaller parts as the number of processors is increased, and workingsets become

cache-resident.

7. Conclusions. An object-oriented computational aeroacoustics code was ported to several distributed

memory parallel platforms using MPI. The port was achieved with only a few changes to the existing code

and the code performance obtained was excellent. The discontinuous Galerkin method provides a significant

amount of computational work that is local to each element that can be effectively used to hide the com-

munication overhead. Strategies employed in the object-oriented design of the serial code to avoid inherent

problems in methods for unstructured grids also facilitated the parallel implementation. The use of object



Large fixed problem size, Origin2000

DOF = 2,423,520 # edges = 60,891 # vertices= 20,572

# Processors [# Elements/ProcessorJ Speedup Rate (106)

1 40,392 1.000 6.26362

2 20,196 1.663 7.52042

4 10,098 3.306 7.56411

8 5,049 6.568 7.57382

12 3,366 10.795 6.93328

16 2,524 15.756 6.23546

32 1,262 42.573 4.59007

64 631 69.686 5.44298
TABLE 6.3

Performance on Origin2000 for problem with 40,392 fifth-order elements.

oriented features, such as virtual hmctions, also greatly facilitated the port. The use of virtual functions,

which require dynamic binding, did not hurt performance because it was applied at a coarse grain level.
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